

National Environmental Monitoring
Virtual Conference
August 3rd, 2020

Non-Target and Suspect-Screening of Reuse Water by Large-Volume Injection Liquid Chromatography and High Resolution Mass Spectrometry.

Will J. Backe, Ph.D.
Public Health Laboratory

Will.Backe@state.mn.us | 651-201-4864

PROTECTING, MAINTAINING AND IMPROVING THE HEALTH OF ALL MINNESOTANS

Reuse Water

- Water scarcity is increasing
- Alternative water sources need to be investigated
- Wastewater, stormwater, industrial water, roof-runoff, grey water, etc.
- Irrigation, cleaning, cooling, toiletflushing
- Understand chemical makeup

Targeted versus Non-target Analysis

- Pre-selection of analytes
- Robust and sensitive
- Quantitative
- Limited in scope
- Reliance on reference standards
- Continued development and validation

Targeted versus Non-target Analysis

- Suspect selection
- Reference standards not required
- Expansive in scope
- Retroactive analysis
- Sample/site comparisons
- Initial development and validation

Limitations to Non-Target Analysis

- Development choices bias results
 - Sample Preparation, Chromatography, Mass Spectrometer, Prioritization, and Data Processing
- Qualitative
- Less sensitive than targeted methods
- Reference standards required for unequivocal IDs
- Data intensive
- Laborious data analysis

Non-target and Suspect Screen Overview

- Quadrupole time-of-flight mass spectrometer
- Molecular formula information

- Molecular formula information
- Structural information

- Carbadox
- $[C_{11}H_{10}N_4O_4+H]^+$
- 263.0775 Da

Instrumental Parameters

HPLC Property of the second of

- Inject 650 μL (LVI)
- Biphenyl Column (+)
- HPH Phenyl-Hexyl Column (-)
- 25 minute gradient
- Rt stability was within 0.2 min

Mass Spectrometry

- 25 Da SWATH Windows
- 34K Resolution @ ~350 m/z
- Mass error < 3.5 ppm

Retention Time Models

- $11+1.9(\log K_{ow})+0.26(\alpha)-5.4(i^{\circ})-0.56(iHBD)$
- $R^2 = 0.89$
- $R^2_{Pred} = 0.87$
- Standard Error = 1.67 min

- 8.9 +2.1(log K_{ow})+0.27(α)-3.1(i°)-1.1(iHBD)-2.6(Carb)
- $R^2 = 0.93$
- $R^2_{Pred} = 0.87$
- Standard Error = 1.50 min

Samples

Name	Site Description	Water Source	Water Use
Α	University Campus	Drinking Water	Irrigation
В	Gov. Campus/Park/DWTP	Stormwater & Filter Backwash	Irrigation
С	Baseball Field	Roof Runoff	Irrigation/Toilets
D	Retail Center	Stormwater	Irrigation
E	Casino	Wastewater & Stormwater	Irrigation
F	Wastewater Treatment Plant	Wastewater	Cooling/Irrigation/Street Sweeping
G	Townhome Development	Stormwater	Irrigation
Н	Motor Pool Garage	Roof Runoff	Irrigation /Vehicle Washing

Feature Reduction and Metrics

Data Reduction	Before	Remaining	Total % Reduction
Integration Quality < 0.5	87462	47729	45
Peak Height < 10000	47729	19205	78
Non-Dups	19205	17030	81
Peak Area RPD < 35	17030	16524	81
Adducts (Na, K)	16524	15036	83
Isotopes	15036	12698	85
Peak Height < 80x Reference	12698	11183	87
Manual Removal	11183	9070	90

Sample	Total Features	Total Area (Millions)	Average Area/Feature	% Unique Features
Α	972	716	740000	83
В	304	160	530000	36
С	551	206	370000	52
D	774	159	210000	59
Е	763	195	260000	53
F	1513	441	290000	85
G	395	94	240000	55
Н	347	128	370000	68

Sample Feature Reduction and Metrics

Data Reduction	Before	Remaining	Total % Reduction
Integration Quality < 0.5	87462	47729	45
Peak Height < 10000	47729	19205	78
Non-Dups	19205	17030	81
Peak Area RPD < 35	17030	16524	81
Adducts (Na, K)	16524	15036	83
Isotopes	15036	12698	85
Peak Height < 80x Reference	12698	11183	87
Manual Removal	11183	9070	90

Sample	Total Features	Total Area (Millions)	Average Area/Feature	% Unique Features
Α	972	716	740000	83
В	304	160	530000	36
С	551	206	370000	52
D	774	159	210000	59
E	763	195	260000	53
F	1513	441	290000	85
G	395	94	240000	55
н	347	128	370000	68

Principal Component Analysis

Sample Name - Description	PC1 (31%)	PC2 (22%)	PC3 (13%)
A - City Drinking Water	-50	152	6.2
B - Stormwater (Gov. Campus and Park) and DWTB	-25	0.7	-6.7
C - Rainwater (Roof Runoff)	-26	-21	-25
D - Stormwater (Commercial/Retail Area)	-35	-62	-70
E - Wastewater and Stormwater (Casino)	-15	-51	112
F - Wastewater (Municipal)	197	17	-7.8
G - Stormwater (Residential Area)	-24	-20	-1.2
H - Rainwater (Roof Runoff)	-22	-17	-8.0

Suspect Screening

- Suspect compounds were from an in-house chemical stock
 - Rx, corrosion inhibitors, PFAS, drugs, oxy-PAHs, artificial sweeteners, hormones, and industrial compounds
- Results are biased based on selection criteria
- 20 out of 97 of the compounds were detected
- All detected compounds are unequivocally confirmed

Suspect Screening (cont.)

Suspect Screening (cont.)

Non-Target

- Identification confidence is based on the Schymanski scale
 - (1) Confirmed, (2) Probable, (3) Tentative, (4) Formula, (5) Feature
- Identifications were prioritized by library matches, peak area, and frequency of detection
 - ~ 4000 compound HRMS library from SCIEX
 - 15,000 + compound library from NIST
 - mzCloud; MetFrag; U.S. EPA Chemistry Dashboard; PubChem

- 58 features triggered library matches considered probable-identifications
 - 44 confirmed; seven refuted; seven not assessed (six matched RM predictions)
 - 17 pharmaceuticals; 19 pesticides; six industrial compounds; six biological compounds; three personal use compounds
- Features prioritized by area and frequency are focused on unique confirmed
 (1) or probable identifications (2).
 - 12 features were confirmed and two were probable (both matched RM predictions)
 - Nine industrial compounds; three pesticides; one pharmaceutical; one personal use compound

Frequently Confirmed Compounds

Implications

- LVI facilitates direct sample analysis and reduces method bias
- Retention models add confidence
- Feature metrics reveal sample differences
- 82 compounds were identified or probable
- Library hits resulted in the most identifications
 - Need widely curated and open-access library data bases.
- Water reuse for irrigation or other practices increases the exposure to CECs.
 - One site uses roof runoff for community garden irrigation

Acknowledgments

- Clean Water Land and Legacy Amendment
- Nancy Rice
- Anita Anderson
- Satoshi Ishii
- Val Dooling
- Paul Moyer
- Stefan Saravia

Thank you.

Will J. Backe, Ph.D.
Public Health Laboratory
Will.Backe@state.mn.us | 651-201-4864

